Lecture 8 Computation

History of Data Science, Spring 2022 @ UC San Diego Suraj Rampure

Announcements

- Homework 8 is released, and is due Sunday, May 22nd at 11:59PM.
- Day).

• Our final class is next week – there will be no class in Week 10 (Memorial -) Honework 9

Come to the DSC town hall tomorrow from 3-5PM in the auditorium of SDSC!

- Babbages' engines and Ada Lovelace's first program.
- The ENIAC.
- Turing.
- Modern advances.

Symbols

binary = base 2

8 bits (1 by te) \rightarrow [111] [1] = 255

- We've looked at how base 40 numbers can be stored in binary.
- But base 10 numbers are not the only thing our computers need to store and work with.
 - What about negative numbers? Decimals?
 - Strings? $ord('A') \rightarrow 65$
 - Colors? $\operatorname{ad}('a') \rightarrow 97$
 - All of these can be stored in binary as well.

Boolean algebra

- George Boole (1815-1864) was an English mathematician.
- In 1854, he published An investigation into the Laws of Thought, on Which are founded the Mathematical Theories of Logic and Probabilities, in which he laid the foundations of **Boolean algebra**.
 - In Boolean algebra, there are two values 1 (True) and 0 (False), and three operators – AND, OR, and NOT.
- Fun fact: at the age of 19, Boole created his own elementary school!

1st. Disjunctive Syllogism.	
Either X is true, or Y is true (exclusive),	x + y - 2xy
But X is true,	x = 1
Therefore Y is not true, .	$\therefore y = 0$
Either X is true, or Y is true (not exclusive),	x + y - xy = xy
But X is not true,	x = 0
Therefore Y is true,	$\therefore y = 1$
2nd. Constructive Conditional Syllogism.	
If X is true, Y is true, $x(1-y)$	() = 0
But X is true, $x =$	1
Therefore Y is true, $\therefore 1 - y = 0$	or $y = 1$.
3rd. Destructive Conditional Syllogism.	
If X is true, Y is true, $x(1 - x)$	(y) = 0
But Y is not true,	y = 0
Therefore X is not true,	x = 0
4th. Simple Constructive Dilemma, the mi	nor premiss e
clusive.	
If X is true, Y is true, $x(1 - x)$	-y) = 0, (41),
If Z is true, Y is true, $z(1 - z)$	y) = 0, (42),
But Either X is true, or Z is true, $x + z - z$	2xz = 1, (43).

From the equations (41), (42), (43), we have to eliminate x and z. In whatever way we effect this, the result is

y = 1;

whence it appears that the Proposition Y is true.

Boolean algebra

- In Boolean algebra, there are two values – 1 (True) and 0 (False), and three operators – AND, OR, and NOT.
- All other operations can be constructed using a combination of these three operators.
- Circuits use Boolean algebra to control the flow of current.

Babbage and Lovelace

Babbages' engines

- Charles Babbage (1791-1871) was an English mathematician and engineer, and is credited with designing the first mechanical computer.
- Babbage designed two types of "engines":
 - A **Difference Engine**, which used the method of finite differences to compute tables of polynomials, and
 - An Analytical Engine, which could carry out more sophisticated operations involving arithmetic, looping, and conditional statements.
- Neither engine was fully built during Babbage's lifetime, though he built prototypes.

Charles Babbage

- Until the late 1900s, it was common to look at printed tables for logarithms and trig functions.
- The accuracy of these tables was crucial for geodesists, astronomers, and navigators, however these tables often contained errors.
- Babbage's goal was to create accurate tables that were generated using a machine.
- Key Idea: polynomials can be used to approximate any function. Taylor servis

$f(x) = x^4 - 3x^3 + 13x^2 - 4x - 7$ f(x) X 0 2

required f(1), f(2), f(3)key: Only used addition!!!

Example: $f(x) =$	$= x^3 - 3x^2 + x_1$	- 1			
X	f(x)	S ,	D ₂	3	
			0	6	
	-2		6	6	
2	-3	5	(2	6	
3	2	17	(8	6	
Ч	19	35	24	6	
5	54	59	36	6	
6	113	89	36	6	
7	202	125	42	6	

Difference Engine

- Babbage's Difference Engines used the method of finite differences to evaluate polynomials, using only addition!
- He designed at least two difference engines Difference Engine No. 1 and Difference Engine No. 2. The latter was designed to evaluate polynomials of degree 7 and used a fraction of the parts of No. 1, which could only evaluate polynomials of degree 6.
- Due to funding constraints, he was never able to fully construct these engines.

A sketch of part of a difference engine

Analytical Engine

- After he devised Difference Engine No. 1, but before he devised Difference Engine No. 2, Babbage designed the more general Analytical Engine.
- The Analytical Engine could be programmed using punch cards.
 - Babbage borrowed the punch card idea from Joseph Marie Jacquard, who created a loom for weaving textiles that read instructions from a punched card.

Punched cards used in a Jacquard loom

Analytical Engine

- The Analytical Engine is often called the "first computer" due to its design - it consisted of: CPY
 - a mill for computation,
 - a **store** to hold values,
 - 3 RAM Reyboard/ Reyboard/ • a **reader** to accept instructions, and displa
 - a printer to display results

A partially complete Analytical Engine, consisting of a mill and a printer. (source)

Ada Lovelace

- Ada Lovelace (1815-1852) was the daughter of Lord Byron and a friend of Charles Babbage.
- She worked closely with Babbage on the design of the Analytical Engine.
- She proposed a **series of steps** that the analytical engine could use to produce the sequence of Bernoulli numbers.
 - This is thought to be the first **computer program**, and hence Lovelace is the first **computer programmer**.
 - However, since the Analytical Engine was never built in their lifetimes, the program was never tested.

> English poet

		-			Diagram for the c	ompi	itatio	n by	the Ei	ngir
Number of Operation.	Nature of Operation.	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	Data. $1V_2$ \bigcirc 0 0 2 2 2	$ \begin{bmatrix} 1V_3 \\ 0 \\ 0 \\ 4 \\ n \end{bmatrix} $	⁰ V ₄ O 0 0 0 0	
1 2	× -	$\overline{\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	¹ V ₄ , ¹ V ₅ , ¹ V ₆ ² V ₄	$ \left\{ \begin{array}{c} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{4} = {}^{2}V_{4} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{array} \right\} $	$= 2 n \dots = 2 n - 1 \dots$	 1	2	n 	2n 2n-1	2
3	+	¹ V ₅ + ¹ V ₁	2V5	$ \left\{ \begin{array}{l} {}^{1}V_{5} = {}^{2}V_{5} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{array} \right\} $ $ \left\{ \begin{array}{l} {}^{2}V_{5} = {}^{0}V_{5} \end{array} \right\} $	$= 2n+1 \qquad \dots \qquad $	1				2 n-
5	+++	$V_5 \div V_4$ $V_{11} \div V_2$	² V ₁₁ ² V ₁₁	$ \left\{ \begin{array}{l} {}^{2}\mathrm{V}_{4}^{\circ} = {}^{0}\mathrm{V}_{4}^{\circ} \right\} \\ \left\{ \begin{array}{l} {}^{1}\mathrm{V}_{11} = {}^{2}\mathrm{V}_{11} \\ {}^{1}\mathrm{V}_{2} = {}^{1}\mathrm{V}_{2} \end{array} \right\} $	$ \begin{vmatrix} = \frac{2n+1}{2n+1} \\ = \frac{1}{2} \cdot \frac{2n-1}{2n+1} \end{vmatrix} $		2			
6	-	0V13-2V11	1 _{V13}	$\left\{ {}^{2V}_{11} {=}^{0} {}^{V}_{11} \\ {}^{0}V_{13} {=}^{1} {}^{V}_{13} \right\}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0$					
7	-	¹ V ₃ - ¹ V ₁	¹ V ₁₀	$\left\{\begin{smallmatrix}^{1}\mathrm{V}_{3} = {}^{1}\mathrm{V}_{3} \\ {}^{1}\mathrm{V}_{1} = {}^{1}\mathrm{V}_{1} \end{smallmatrix}\right\}$	= n - 1 (= 3)	1		n		
2	+	"V2 +"V7	¹ V ₇	$\left\{\begin{smallmatrix} 1 \mathbf{V}_2 &= 1 \mathbf{V}_2 \\ 0 \mathbf{V}_7 &= 1 \mathbf{V}_7 \end{smallmatrix}\right\}$	= 2 + 0 = 2		2			
9	÷	$^{1}V_{6} \div ^{1}V_{7}$	³ V ₁₁	$\left \left\{ \begin{smallmatrix} \mathbf{I} \mathbf{V}_6 &= \mathbf{I} \mathbf{V}_6 \\ 0 \mathbf{V}_{11} &= 3 \mathbf{V}_{11} \end{smallmatrix} \right\} \right $	$=\frac{2n}{2}=\lambda_1\dots\dots\dots$					
10	×	1V21×3V11	1 _{V12}	$\left\{\begin{smallmatrix} {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \end{smallmatrix}\right\}$	$= B_1 \cdot \frac{2n}{2} = B_1 A_1 \dots$					

 $\left\{ \begin{smallmatrix} {}^{1}\mathrm{V}_{12} = {}^{0}\mathrm{V}_{12} \\ {}^{1}\mathrm{V}_{13} = {}^{2}\mathrm{V}_{13} \end{smallmatrix} \right\} = -\frac{1}{2} \cdot \frac{2\,n-1}{2\,n+1}$

 $\left\{ \begin{matrix} {}^{1}\mathrm{V}_{10} = {}^{2}\mathrm{V}_{10} \\ {}^{1}\mathrm{V}_{1} = {}^{1}\mathrm{V}_{1} \end{matrix} \right\} = n-2 \, (=2)$

 $\begin{cases} {}^{1}V_{7} = {}^{2}V_{7} \\ {}^{2}V_{6} = {}^{2}V_{6} \\ {}^{2}V_{7} = {}^{2}V_{7} \end{cases} = \frac{2n-3}{3} \dots \dots$

|=2n-1

|=2n-2

= 3 + 1 = 4

 $\begin{cases} {}^{1}V_{9} = {}^{0}V_{9} \\ {}^{4}V_{11} = {}^{5}V_{11} \\ {}^{1}V_{22} = {}^{1}V_{22} \\ {}^{0}V_{12} = {}^{2}V_{12} \\ {}^{0}V_{12} = {}^{2}V_{12} \\ {}^{2}V_{12} = {}^{0}V_{12} \\ {}^{2}V_{12} = {}^{0}V_{12} \\ {}^{2}V_{12} = {}^{2}V_{12} \\ {}^$

= 2 + 1 = 3

 $\begin{cases} {}^{1}V_{6} = {}^{2}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$

 $\left\{ {}^{3}V_{H} = {}^{4}V_{H} \right\}$ $^{2}V_{6} = {}^{3}V_{6}$

 $=^{1}V_{1}$

 $\left\{ \begin{array}{c} {}^{3}V_{6} = {}^{3}V_{6} \\ {}^{3}V_{7} = {}^{3}V_{7} \end{array} \right\} = \frac{2n-2}{4}$

 $\begin{vmatrix} {}^{2}V_{12} = {}^{0}V_{12} \\ {}^{2}V_{13} = {}^{3}V_{13} \end{vmatrix} = \Lambda_{0} + B_{1}\Lambda_{1} +$

 $\begin{cases} {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{5}V_{6} = {}^{0}V_{6} \\ {}^{6}V_{7} = {}^{0}V_{7} \end{cases} = {}^{n} + 1 = 4 + 1 + 1 = 4 + 1 = 4 + 1 = 4 + 1 = 4 + 1 = 4 + 1 = 4 + 1 = 4 + 1 =$

 $\begin{vmatrix} {}^{2}V_{10} = {}^{3}V_{10} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{vmatrix} = n - 3 \ (= 1)$

 $\left\{ \begin{array}{c} {}^{4}\mathrm{V}_{13} = {}^{0}\mathrm{V}_{13} \\ {}^{0}\mathrm{V}_{24} = {}^{1}\mathrm{V}_{24} \end{array} \right\} = \mathrm{B}_{7}$

 $\begin{cases} {}^{1}V_{1}^{0} = {}^{1}V_{1}^{0} \\ {}^{2}V_{7}^{0} = {}^{3}V_{7}^{0} \end{cases}$

...

1

1

1

49.6

...

...

1

...

1

 $+ B_1 \cdot \frac{2n}{2}$

...

...

....

...

....

...

....

140

...

...

...

...

...

...

...

....

....

...

....

...

...

...

... n+1 ...

Here follows

11

12

13

14

15

16

17

19

20

21

22

23

24

25

 $+ V_{12} + V_{13}^{2V}$

-1V6 -1V1 2V6

 $+^{1}V_{1} + ^{1}V_{7}$

 $\div {}^2V_6 \div {}^2V_7$

L× 1V8 × 3V11 4V11

+ 1V1 + 2V7 3V

÷ 3V6 ÷ 3V7 1V

 $[\times]^{1}V_{9}\times {}^{4}V_{11}|^{5}V_{11}$

× 1V22×5V11 0V12

+ 2V12+2V13 3V13

+ "V13+"V24 1V24

 $+ {}^{1}V_{1} + {}^{1}V_{3} {}^{1}V_{3}$

- 2V10-1V1 3V10

Lovelace's note on how
to compute the sequen

 $1 = 4 + 1 = 5 \dots$

he Er	ngine	of the	Num	bers o	f Beri	10ulli.	See Note G. (page	e 722 et seq	.)				
	Working Variables.							Result Variables.					
°V4 000000	⁰ V ₅ O 0 0 0	⁰ V ₆ ⁽⁾ 0 0 0 0 0	⁰ V ₇ O 0 0 0 0	●Vs ○ 0 0 0 0	⁰ V ₉ O 0 0 0	⁰ V ₁₀ O 0 0 0 0 0	⁰ V ₁₁ O 0 0 0	⁰ V ₁₂ O 0 0 0	⁰ ¥ ₁₃ O 0 0 0	$\begin{bmatrix} B_1 \text{ in a} \\ \text{decimal} \bigcirc_{\underline{N}} A \\ \text{fraction.} \end{bmatrix}$	[™] [™] [™] [™] [™] [™] [™] [™] [™] [™]		^o V ₂₁ O 0 0 0 B ₇
2n 2n-1	2 n	2 n											
	2n+1											Provide Provid	100 A 10
0	0						$\frac{2n-1}{2n+1}$	in the second	to y whether the pairs				1.000
·							$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$		a page and a suit break a			-	Church 1
							0		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$		-		
						n - 1		. 1000	and the last of the		19		are and
			2					-			1.20	Par dan	ix dige
		2 n	2				$\frac{2n}{2} = A_1$		Children 10	1.000 C 10	- 100		the state
							$\frac{2n}{2} = \Lambda_1$	$B_1 \cdot \frac{2n}{2} = B_1 A_1$		B,			-
								0	$\left\{-\frac{1}{2},\frac{2n-1}{2n+1}+B_1,\frac{2n}{2n}\right\}$			-	Toni-Closed
						n-2			(2 2n+1 2)	8			-18
		2n - 1							· · · · · · · · · · · ·				
			3										
		2n-1	3	$\frac{2n-1}{3}$							1000		
				0			$\frac{2n}{2} \cdot \frac{2n-1}{3}$	The second	and the second second	+		6.6373	1.12.
		2n - 2		1								-	
•••			4		2n - 2		$\left\{\frac{2n}{2}, \frac{2n-1}{2}, \frac{2n-2}{2}\right\}$		the second second second lines		an total		and the second
		2n - 2	*		4		$\left\{\begin{array}{ccc}2&3&3\\&=A_3\end{array}\right\}$		State of the state	a lyn	Canal P	- mark	
					0				A second in the second	anne d	- ten sin		
							0	B ₃ A ₃			Ba	the ship	· Carro
						n – 3			$\left[\int a_3 + b_1 a_1 + b_2 a_3\right]$	an in a	DI INS		
ere folle	ows a re	 petition	of Open	rations t	 hirteen	to twent	y-three.	-	and and the	-	5-10	1	ment
		1	1			1		1	[1			B,
		0	0	-									
			1										

to use the Analytical Engine ce of **Bernoulli numbers**.

Bernoulli numbers

 As you explore discover in this week's homework, the Ber computing sums of the form

$$1^m + 2^m + 3^m + \ldots + n^m$$

• Example sums:
•
$$1+2+3+\ldots+n = \frac{n(n+1)}{2}$$
 • $\frac{1}{2}+\frac{1}{2}$
• $1^2+2^2+3^2+\ldots+n^2 = \frac{n(n+1)(2n+1)}{6}$ • $\frac{1}{3}$
• $1^3+2^3+3^3+\ldots+n^3 = \left(\frac{n(n+1)}{2}\right)^2$ • $\frac{1}{4}$

• The first 8 Bernoulli numbers:

$$B_0 = 1, \ B_1 = -\frac{1}{2}, \ B_2 = \frac{1}{6}, \ B_3 = 0, \ B_4 - \frac{1}{30}, B_5 = 0, B_6 = \frac{1}{42}, \ B_7 = 0, \dots$$

• As you explore discover in this week's homework, the Bernoulli numbers are a sequence of rational numbers that arise when

Early-to-mid 1900s

Turing

- Alan Turing (1912-1954) was an English mathematician, and is known as the founder of theoretical computer science.
 - The "Nobel Prize in CS" is called the Turing Award.
- He ideated the **Turing machine**, a mathematical model of a computer forms the basis of modern computation.
 - Big idea: there are computer programs that "don't exist" (e.g. the Halting problem).
- He also helped crack the **Enigma**, a machine the Germans used during WWII to encrypt their morse code messages.
 - This helped shorten WWII by an estimated two years (saving 10s of millions of lives).

Bletchley Park, the headquarters of the Allies' codebreaking efforts during WWII.

• In 1945, ENIAC (Electronic Numerical Integrator and Calculator) was designed and built at the University of Pennsylvania by John Mauchly and John Presper Eckert.

- It is the first "programmable, general-purpose electronic digital computer." It could perform 5,000 additions per second.
- It was massive it took up 1800 square feet of space and weighed 30 tons.
- The US Military funded the ENIAC project as it would help them quickly calculate artillery firing ranges (though the ENIAC was only completed just after WWII).

Jean Bartik and Frances Spence programming the ENIAC.

Hopper

- Grace Hopper (1906-1992) was an American computer scientist and Navy officer.
 - She earned her PhD in math at Yale, and was a programmer for the Harvard Mark I and II, an early electromechanical computer developed by IBM.
 - Afterwards, she joined the Eckert-Mauchly Computer Corporation, and while there she developed the idea of a programming language that looked like English, as the current method of programming was very symbol-heavy. The result was COBOL, which is still in use today !!
- Fun fact: she discovered the first "bug", which was a moth that snuck into the Harvard Mark II.

'S punchcard bugs?

yellkey.com/special COBOL (Common Business-Oriented Language)

"It's much easier for most people to write an English statement than it is to use symbols. So I decided data processors ought to be able to write their programs in English, and the computers would translate them into machine code." – Hopper (<u>source</u>)

Many banks and government agencies still rely on code written in COBOL.

1	IDENTIFICATION DIVISION.
2	PROGRAM-ID. ADD_NUMBERS.
3	DATA DIVISION.
4	FILE SECTION.
5	WORKING-STORAGE SECTION.
6	01 FIRST-NUMBER PICTURE IS 99.
7	01 SECOND-NUMBER PICTURE IS 99.
8	01 RESULT PICTURE IS 9999.
9	PROCEDURE DIVISION.
10	
11	MAIN-PROCEDURE.
12	DISPLAY "Here is the first Number "
13	MOVE 8 TO FIRST-NUMBER
14	DISPLAY FIRST-NUMBER
15	
16	DISPLAY "Let's add 20 to that number."
17	ADD 20 TO FIRST-NUMBER
18	DISPLAY FIRST-NUMBER
19	
20	DISPLAY "Create a second variable"
21	MOVE 30 TO SECOND-NUMBER
22	DISPLAY SECOND-NUMBER
23	
24	*>COMMENT: COMPUTE THE TWO NUMBER AND PLACE INTO RESULT*
25	COMPUTE RESULT = FIRST-NUMBER + SECOND-NUMBER.
26	
27	DTSPLAY "The result is:".
28	DISPLAY RESULT.
29	STOP RUN.
30	END PROGRAM ADD NUMBERS.
31	
01	

That's all!