Lecture 4

# Least Squares, Percentiles, and Regression

History of Data Science, Spring 2022 @ UC San Diego Suraj Rampure



- Homework 4 is released and is due on Sunday, April 24th at 11:59PM.
- and on the course website.

Homework 2 is graded! Make sure to look at the solutions, posted on Slack



- Legendre and Gauss' development of least squares.
- Quetelet and the "average man".
- Galton's development of regression.
- Pearson.

# Least squares





- geodesy<sup>1</sup>.
- 1. https://www.britannica.com/biography/Adrien-Marie-Legendre

 Adrien-Marie Legendre (1752-1833) was a French mathematician who was also active in the field of

 In 1791, the French Academy of Science defined a meter as being one ten millionth of the length of the meridian arc starting at the North Pole, passing through Paris, and ending at the equator.

• He helped measure the length of a meter.

## Legendre's least squares

- general procedure for estimating coefficients of linear equations.
- He wrote (translated):

"Of all the principles which can be proposed for [making estimates from a sample], I think there is none more general, more exact, and more easy of application, than that of which we have made use... which consists of rendering the sum of the squares of the errors a minimum."



 In a 1805 paper about measuring the orbits of comets, Legendre published an appendix titled "Sur la Methode des moindres quarres", which detailed a





- mathematicians of all time.
- He is known for developing or contributing to:
  - Least squares.
  - The normal (Gaussian) distribution.
  - Algebra and number theory.
    - He supposedly summed the positive integers between 1 and 100 very quickly.
  - Electromagnetism.
  - **Not** Gaussian elimination!
- 1. <u>https://www.britannica.com/biography/Carl-Friedrich-Gauss</u>

## • Carl Friedrich Gauss (1777-1855)<sup>1</sup> was a German mathematician, and is one of the most accomplished



 $+ S = \frac{100 + 99 + 97 + \cdots + 3 + 2 + 1}{100 + 99 + 97 + \cdots + 3 + 2 + 1}$  $\frac{1}{25} = \frac{101 + 101 + 101 + 101 + 101 + 101 + 101 + 101}{25} = \frac{101 + 101 + 101 + 101}{101 + 101} = \frac{101 + 101}{101} = \frac{101}{101} = \frac{$  $=) 2S = 101 \cdot 100$  $S = |0| \cdot |00| = 50 \cdot |0| = 5050$ 

# S = 1+2+3+4+-- + 98+97+100



## Gauss and least squares

- In 1809, Gauss published "Theory of the Motion of the Heavenly" Rodies Moving About the Sun in Conic Sections", and in it he used the method of least squares to calculate the shapes of orbits.
  - Legendre published about least squares in **1805**, 4 years before. However, Gauss claimed to have known about least squares in 1795.
  - Evidence: Gauss was able to predict the precise location of planetoid Ceres using his method of least squares.
    - Ceres was observed on January 1st, **1801** for a period of 40 days. Several astronomers competed to predict where it would be spotted again, and Gauss' guess was the only correct one<sup>2</sup>.
- https://www.britannica.com/biography/Carl-Friedrich-Gauss
- 2. <u>https://blog.bookstellyouwhy.com/carl-friedrich-gauss-and-the-method-of-least-squares</u>





the orbits of Ceres and Pallas (nachlaß Gauß, Handb.





## **Error distributions**

where  $\epsilon_i$  is a random variable that follows the following error distribution:  $\phi(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 

 One of the key differences between the approaches to least squares by Gauss and Legendre was that Gauss linked the theory of least squares to probability theory.

• Specifically, he posed the least squares **model** where  $y_i = a + bx_i + \epsilon_i$ 

normal/Gaussian distribution





We will study Gauss' derivation of the (now-called) Gaussian/normal distribution in Lecture 5.

## Maximum likelihood estimation (MLE)

- To illustrate the power of Gauss' contribution, we need to describe the
- concept of maximum likelihood estimation.
  Suppose we have a coin, whose bias, p, is unknown. We flip the coin 10 times, and see the sequence HTTHTTTTH.
- Question: what is the best guess for the value of p? reasonable =  $\frac{3}{10} = 0.3$ , proportion of beads in beads in N Sample

HTTHTTTTH Sequence P(sequence) = 0.6.0.4.0.4.0.6.0.4.0.6.0.4.0.6  $= 0.6^3 \cdot 0.4^7$ R(sequence) = 0.2.0.8 L(p) = P(sequence if bias is p)=  $P(1-p)^{7} \rightarrow maximize L(p)!$ Likelhood

What if p=0.6what if p = 0.2idea: maximize LOG of likelihood  $3^{=103(2)}$  if asb. maximize  $LL(p) = log(p^{3}(1-p)^{7})$  is this allowed?



 $LL(p) = log(p^{3}(1-p)^{7})$  $= \log (p^{3}) + \log ((1-p)^{7})$  $L(p) = 3\log(p) + 7\log(1-p)$  $\frac{d}{dp} L(p) = 3 \cdot \frac{1}{p} + 7 \cdot \frac{1}{1-p} (-1) = 0$ 3 = + PIP 3(1-p) = 7p

log mles log(ab)= log(a) + log(b)log(a<sup>n</sup>) = n log(a)





## Maximum likelihood estimation (MLE)

• In general, if we flip a fair coin *n* times and see *x* heads, to find the "best guess" for p, we maximize the likelihood function

L(p

• It is hard to maximize this directly, so instead we maximize the log-likelihood:

LL(p

• This is maximized when  $p = \frac{x}{-}$ , which matches our intuitive guess. N

$$p) = p^x (1-p)^{n-x}$$

$$p) = x \log p + (n - x) \log(1 - p)$$

- are independent and follow a Normal distribution, then maximizing (log-)likelihood is equivalent to minimizing mean squared error.
  - This is a big reason why least squares is so prevalent not only is it this **assumption of normality**.
  - rest of your data science career.

a + bx; + 6;MLE and regression  $L(a, b, \sigma^2) = -\frac{1}{n} \frac{2(y_1 - a - bx_1)}{2(y_1 - a - bx_1)}$ • Key point: if you use the assumption that the errors in a linear regression model

computationally easy to minimize mean squared error, but it is consistent with

• You're not expected to fully grasp this concept just yet, but it is valuable context to have throughout the rest of today's lecture, for tomorrow's lecture, and for the

# Statistics in biology and sociology



- Adolphe Quetelet (1796-1874)<sup>1</sup> was a Belgian astronomer, mathematician, statistician, and sociologist.
  - He was born in Ghent (picture to the right).
- Originally an **astronomer**, he is known for being one of the first people to apply statistical methods to ideas in the **social** sciences.
- 1. <u>https://www.britannica.com/biography/Adolphe-Quetelet</u>



## Photo taken in Ghent by Suraj

## From astronomy to social science

- Astronomers took the **average** of several observations to estimate the **true value** of some quantity, i.e. to reduce observational error.
  - e.g. measuring the speed of Saturn.
- Quetelet was the first to apply the average to data on humans and societies.
  - For instance, he obtained a dataset containing the chest circumferences of thousands of Scottish soldiers<sup>1</sup>.
  - He computed the average of the chest circumferences of these soldiers, yielding ~39.75 inches.
  - What does this mean?

1. <u>https://www.theatlantic.com/business/archive/2016/02/the-invention-of-the-normal-person/463365/</u>

## The "average man"

- Possible interpretations:
  - 39.75 inches is the chest size we'd expect if we selected a random soldier.
  - 39.75 inches is roughly the chest size of a normal soldier.
- individual's chest size is due to error.
  - is defined by having an average measurement in several biological and sociological characteristics.
  - human.

• Quetelet's interpretation: 39.75 inches is the **true** chest size of soldiers, and any differences in an

• Later, Quetelet described the concept of the "average man" (in his words, l'homme moyen), who

• He believed that with more data, we could get closer and closer to approximating the "true"

## Quetelet index

Quetelet index, defined as

d as Quetelet index =  $\frac{\text{mass in kg}}{(\text{height in m})^2} = \frac{\text{BMI}}{(\text{Body Mass})}$ 

- Quetelet never intended it to be a measure of obesity.
- by insurance companies.

## To quantify the weight and height of the average man, Quetelet devised the

• However, in the 1900s, the Quetelet index began to be used for this purpose



## Galton

# Legendre: 1805 Granss: 1809 • Sir Francis Galton (1822-1911) was a British polymath. - CV (Minim

• He was knighted in 1909, hence the "Sir".

- He was Charles Darwin's half-cousin. As we will see, this played a pivotal role in the ideas he decided to study.
  - Example: Galton was the first to discover that everyone has unique fingerprints, and thus that fingerprints can be used for identification.
- <u>galton.org</u> contains excerpts of many of his original works.
- Note that Galton was only born years after Legendre and Gauss formulated least squares.
- 1. <u>https://www.britannica.com/biography/Francis-Galton</u>





## Aside: Darwin and the "Rule of Three"

- Charles Darwin is well-known for his development of the theory of evolution, though he was supposedly not found of mathematics.
- He wrote to a colleague,

"I have no faith in anything short of actual measurement and the Rule of Three."<sup>1</sup>

- one can find the fourth by cross-multiplication.
- *a*, *b*, *c*, *d*?

1. Stigler, The Seven Pillars of Statistical Wisdom, p.107

• The "Rule of Three" in question is that if  $\frac{a}{b} = \frac{c}{d}$ , then given any three of a, b, c, d,

• Question: does the Rule of Three work when there is measurement error in any of



15 miles 777

15 miles

227

## Galton's motivation

- Galton was interested in studying how traits were passed from parents to children.
- He created the field of **eugenics**, and wrote:

"Eugenics is the science which deals with all influences that improve the inborn qualities of a race; also with those that develop them to the utmost advantage. The improvement of the inborn qualities, or stock, of some one human population, will alone be discussed here."<sup>1</sup>

- and so only people with those characteristics should have children.
- Along these lines, he "ranked" the worth of each race.

1. <u>https://galton.org/essays/1900-1911/galton-1905-socpapers-eugenics-definition-scope-aims.pdf</u>

Jury trouble some

In other words, he believed that the traits that made people successful were inheritable,

• Virtually all of the statistical techniques he developed were to further his study of eugenics.

## Nature

**Genes and Hereditary Factors** physical appearance personality characteristics



## Nurture

**Environmental Variables** childhood experiences how we were raised social relationships surrounding culture

Galton coined the phrase "nature vs. nurture." (graphic source)

S)

 $\langle | \rangle$ 

## Percentiles

- Galton developed the idea of a **percentile**.
- He collected data on the physical measurements of many individuals and summarized the data using percentiles, quartiles, and deciles.

WHEN any large group of statistical cases is sorted into a hundred classes equal in number, and progressively increasing in value, the dividing values between the classes are called Percentiles;<sup>2</sup> or, if into ten classes, they are called Deciles; or if into four classes, they are called Quartiles. The fiftieth percentile, the fifth decile, and the second quartile are cousequently the same All other deciles, &c., are calculated on the as the median.

1. <u>https://galton.org/essays/1880-1889/galton-1885-nature-percentiles.pdf</u>

pre smallest value

## aretle

pto = et cetera







(The value that is unreached by n per cent, of any large group of measurements, and surpassed by 100-11 of them, is called its nth

|                                                                      |       |                                                                                 |          |                | Values surpassed by per-cents as below |                                         |              |                           |                                        |              |                                        |                                                   |                                        |                                        |                         |  |
|----------------------------------------------------------------------|-------|---------------------------------------------------------------------------------|----------|----------------|----------------------------------------|-----------------------------------------|--------------|---------------------------|----------------------------------------|--------------|----------------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------|--|
| Subject of measurement                                               | 1.70  | Unit of                                                                         | <b>C</b> | No. of persons | 95                                     | 90                                      | 80           | 70                        | 60                                     | 50           | 40                                     | 30                                                | 20                                     | 10                                     | 5                       |  |
| dubject of measurement                                               | Age   | measure-<br>ment                                                                | Sex      | in the group   |                                        | Values unreached by per-cents, as below |              |                           |                                        |              |                                        |                                                   |                                        |                                        |                         |  |
|                                                                      |       |                                                                                 |          |                | 5                                      | IO                                      | 20           | 30                        | 40 <b>*</b>                            | 50           | 60                                     | 70                                                | 80                                     | 90                                     | 95                      |  |
| Ieight, standing, )<br>without shoes J                               | 23-51 | Inches $\left\{ \right.$                                                        | М.<br>F. | 811<br>770     | <mark>63·2</mark><br>58·8              | 64°5<br>59°9                            | 65.8<br>61.3 | <mark>66·5</mark><br>62·1 | 67 3<br>62 7                           | 67·9<br>63·3 | 68·5<br>63·9                           | <mark>69<sup>.</sup>2</mark><br>64 <sup>.</sup> 6 | 70°0<br>65°3                           | 71·3<br>66·4                           |                         |  |
| leight,sitting,from }<br>seat of chair ∫                             | 23–51 | Inches $\left\{ \right.$                                                        | M.<br>F. | 1013<br>775    | 33 <sup>.</sup> 6<br>31 <sup>.</sup> 8 | 34°2<br>32°3                            | 34 9<br>32 9 | 35°3<br>33°3              | 35 <sup>-</sup> 4<br>33 <sup>-</sup> 6 | 36°0<br>33°9 | 36°3<br>34°2                           | 36.7<br>34.6                                      | 37 <b>'1</b><br>34 <b>'</b> 9          | 37 <sup>.</sup> 7<br>35 <sup>.</sup> 6 | 38.<br>36.0             |  |
| p <b>an of ar</b> ms                                                 | 23-51 | Inches $\left\{ \right.$                                                        | M.<br>F. | 811<br>770     | 65 <sup>.</sup> 0<br>58 <sup>.</sup> 6 | 66 · 1<br>59 · 5                        | 67 2<br>60 7 | 68°2<br>61°7              | 69°0<br>62°4                           |              | 70 <sup>.</sup> 6<br>63 <sup>.</sup> 7 | 71'4<br>64'5                                      | 72 <sup>.</sup> 3<br>65 <sup>.</sup> 4 | 73 <sup>.</sup> 6<br>66. <b>7</b>      | 74 <sup>•</sup><br>68 • |  |
| Veight in ordinary )<br>indoor clothes )                             | 23-26 | Pounds {                                                                        | M.<br>F. | 520<br>276     | I 2 I<br>102                           | 125<br>105                              | 131<br>110   | 135<br>114                | 139<br>118                             | 143<br>122   | I47<br>I29                             | 150<br>132                                        | 156<br>136                             | 165<br>142                             | 172<br>149              |  |
| reathing capacity                                                    | 23-26 | $\begin{array}{c} \text{Cubic} \\ \text{inches} \end{array} \Big\{ \end{array}$ | M.<br>F. | 212<br>277     | 161<br>92                              | 177<br>102                              | 187<br>115   | 199<br>124                | 211<br>131                             | 219<br>138   | 226<br>144                             | 236<br>151                                        | 248<br>164                             | 277<br>177                             | 290<br>186              |  |
| trength of pull as } archer with bow }                               | 23-26 | Pounds $\left\{ \right.$                                                        | M.<br>F. | 519<br>276     | 56<br>30                               | 60<br>32                                | 64<br>34     | .68<br>36                 | 71<br>38                               | 74<br>40     | 77<br>42                               | 88<br>44                                          | 82<br>47                               | 89<br>51                               | 96<br>54                |  |
| trength of squeeze }<br>ith strongest hand }                         | 23-26 | Pounds {                                                                        | M.<br>F. | 519<br>276     | 67<br>36                               | 71<br>39                                | 76<br>43     | 79<br>47                  | 82<br>49                               | 85<br>52     | 88<br>55                               | 91<br>58                                          | 95<br>62                               | 100<br>67                              | 104<br>72               |  |
| wiftness of blow.                                                    | 23–26 | Feet per { second {                                                             | M.<br>F. | 516<br>271     | 13·2<br>9·2                            | 14'I<br>10'I                            | 15.2<br>11.3 | 16.2<br>12.1              | 17.3<br>12.8                           | 18·1<br>13·4 | 19'1<br>14'0                           | 20'0<br>14'5                                      | 20'9<br>15'1                           | 22.3<br>16.3                           | 23.<br>16.              |  |
| ight, keenness of<br>—by distance of<br>reading diamond<br>test-type | 23-26 | Inches {                                                                        | M.<br>F. | 398<br>433     | 13<br>10                               | 17<br>12                                | 20<br>16     | 22<br>19                  | 23<br>22                               | 25<br>24     | 26<br>26                               | 28<br>27                                          | 30<br>29                               | 32 ·<br>31                             | 34<br>32                |  |

1. <u>https://galton.org/essays/1880-1889/galton-1885-nature-percentiles.pdf</u>

|                | 7               | p po              | . Ay       | TAB                                        | BLE A.                     |                                  |                                                        |                       |                    |  |
|----------------|-----------------|-------------------|------------|--------------------------------------------|----------------------------|----------------------------------|--------------------------------------------------------|-----------------------|--------------------|--|
| (              | ۸.)             | (B.)              | (0.)       | (IJ.)                                      | (E.)                       | (F.)                             | (G.)                                                   | Interpolated Deci les |                    |  |
|                | erism.<br>Cent. | No. of<br>Unions. | from top.  | Successive<br>tenths of the<br>total of B. | D — C<br>(in each<br>row). | D – C<br>multiplied<br>into 0.5. | D - C<br>× (0.5)<br>•nd divided<br>by B <sub>1</sub> * | Order.                | Value<br>(G + A) † |  |
| Below          | 1.75            | 7                 | 7          |                                            |                            |                                  |                                                        |                       |                    |  |
| 1.75 to        | 2·25            | 7                 | 14         |                                            |                            |                                  |                                                        |                       |                    |  |
| 2.25 "         | 2.75            | 11                | 25         |                                            |                            |                                  |                                                        |                       |                    |  |
| 2.75 ,,        | 3.25            | 21                | 46         | 59                                         | 13                         | 6.2                              | 0.23                                                   | 1st                   | 3.48               |  |
| 3·25 "         | 3.75            | 28                | 74         |                                            |                            |                                  |                                                        |                       |                    |  |
| 3.75 "         | 4.25            | 33                | 107        | 118                                        | 11                         | 5.2                              | 0.12                                                   | 2 nd                  | 4'37               |  |
| 4·25 "         | 4.75            | 4.6               | 153        | 176                                        | 23                         | 11.2                             | 0.21                                                   | 3rd                   | 4.96               |  |
| 4.75 ,,        | 5.25            | 55                | 208        | 235                                        | 27                         | 13.5                             | 0.34                                                   | 4th                   | 5 59               |  |
| 5.25 "         | 5.75            | 40                | <b>248</b> |                                            |                            |                                  |                                                        | ******                |                    |  |
| 5·75 "         | 6·25            | 45                | 293        | 294                                        | 1                          | 0.2                              | 0.01                                                   | 5th                   | 6*26               |  |
| 6.25 ,,        | 6·75            | 44                | 337        | 353                                        | 16                         | 8.0                              | 0.23                                                   | 6th                   | 6.98               |  |
| 6·75 "         | 7.25            |                   | 372        | 412                                        | 40                         | 200                              | 0.45                                                   | 7th                   | 7.70               |  |
| 7.25 ,,        | 7.75            | 44                | 416        |                                            |                            |                                  |                                                        |                       |                    |  |
| 7.75 "         | 8·25            | 31                | 447        | 470                                        | 23                         | 11.2                             | 0.43                                                   | 8th                   | 8.68               |  |
| 8·25 "         | 875             | 27                | 474        |                                            |                            |                                  |                                                        |                       |                    |  |
| 8·75 "         | 9.25            |                   | 508        |                                            |                            |                                  |                                                        |                       |                    |  |
| <b>9</b> ·25 " | 9.75            | 21                | 529        | 529                                        | 0                          | 0.0                              | 0.00                                                   | 9th                   | 9.75               |  |
|                | 10.25           | 11                | 540        |                                            |                            |                                  |                                                        |                       |                    |  |
|                | 10.25           | 4 <sup>8</sup>    | 588        |                                            | <u></u>                    |                                  |                                                        |                       |                    |  |
|                |                 | 588               |            |                                            |                            |                                  |                                                        |                       |                    |  |

\*  $B_1$  in column G means the entry in column B that lies one line below that on which the ... try in F is standing. Thus 6.5 is divided by 28, and 5.5 by 46. + The second decimal is approximate.

1. <u>https://galton.org/essays/1890-1899/galton-1896-jrss-percentiles-yule.pdf</u>



Here is an example of how Galton applied his **method of deciles**. Let's see if we can understand how it works.



|                                         |                   |                        | TAI                                      | BLE A.   |                                  |                                            |                |                    |                     |
|-----------------------------------------|-------------------|------------------------|------------------------------------------|----------|----------------------------------|--------------------------------------------|----------------|--------------------|---------------------|
| (A.)                                    | (B.)              | (c.)                   | (.u)                                     | (E.)     | (17.)                            | (6.)                                       | Interpolat     | ted Deci les       | D-C                 |
| Pauperism.<br>Per Cent.                 | No. of<br>Unions. | Sums of B<br>from top. | Successive<br>tenthsofthe<br>total of B. | (in each | D – C<br>multiplied<br>into 0.5. | D - C × (0.5)<br>•nd divided<br>by $B_1$ * | Order.         | Value<br>(G + A) † | B,                  |
| Below 1.75<br>1.75 to 2.25              | 7<br>7            | 7<br>14                |                                          |          |                                  |                                            |                |                    | = fraction a        |
| 2.25 , $2.752.75$ , $3.253.25$ , $3.75$ | 11<br>21<br>28    | 25<br>46<br>74         | <u>59</u>                                | <br>13   | <u>6.2</u>                       | 0.23                                       | 1st            | 3.48               | the nex             |
| 3.75 , $4.254.25$ , $4.75$              | 28<br>33<br>46    | 107<br>153             | 118<br>176                               | 11<br>23 | 5.5<br>11.2                      | 0·12<br>0·21                               | 2rd<br>3rd     | 4'37<br>4'96       | him to              |
| 4.75 , $5.255.25$ , $5.755.75$ , $6.25$ | 55<br>40<br>45    | 208<br>248<br>293      | $\frac{235}{294}$                        | 27<br>   | 13.5<br>                         | 0·34<br><br>0·01                           | 4th<br><br>5th | 5°59<br>6°26       | "cover"             |
| 6.25 , $6.756.75$ , $7.25$              | 44<br>35          | 337<br>372             | 353<br>412                               | 16<br>40 | 8·0<br>20 0                      | 0.23<br>0.45                               | 6th<br>7th     | 6.98<br>7.70       |                     |
| 7.25, $7.757.75$ , $8.258.25$ , $8.75$  | 44<br>31<br>27    | 416<br>447<br>474      | 470                                      | 23       | 11.5                             | 0.43                                       | 8th            | 8.68               | 0.5 = 512<br>of 6.v |
| 8.75 , $9.259.25$ , $9.75$              | 34<br>21          | 508<br>529             | 529                                      | 0        | 0.0                              | 0.00                                       | 9th            | 9.75               | of biv              |
| 9.75 " 10.25 …<br>Above 10.25 …         | 48                | 540<br>588             |                                          |          |                                  |                                            |                |                    |                     |
|                                         | 588               |                        |                                          |          |                                  |                                            |                |                    |                     |

\* B<sub>1</sub> in column G means the entry in column B that lies one line below that on which the ...try in F is standing. Thus 6.5 is divided by 28, and 5.5 by 46. † The second decimal is approximate.





Suppose ne want to find quardres. 60 nomburs total -> It at position 15 -> 4 at position 30 > t at position 45 60 + (15 - 12) 4



## Human characteristics are "normally" distributed

- While he did not derive the normal distribution (Gauss did), Galton was the first to call it by the name "normal" distribution, rather than the name "error distribution".
  - He observed that many human characteristics, such as human height, roughly follow a **normal** distribution.
  - In order to demonstrate why this is the case, he constructed what is known as a **quincrux**.
- See an animated quincrux <u>here</u>.







## Heights

- One trait Galton was interested in studying was the difference in heights between parents and their children.
- He defined a new quantity, "midparent height", as being the average of a child's mother's and father's heights, after the mother's height was multiplied by 1.08.
  - He also multiplied the heights of daughters by 1.08.
- After collecting data, he estimated that the correlation between the deviations of midparent heights and the deviations of child heights was -.

| Heights<br>the Mic<br>parents | 1- |       |                                      |        |      |      |                   |      |      | Total Nu                              | Medians. |      |      |      |          |                                       |                  |      |
|-------------------------------|----|-------|--------------------------------------|--------|------|------|-------------------|------|------|---------------------------------------|----------|------|------|------|----------|---------------------------------------|------------------|------|
| inches                        |    | Below | 62 <sup>.</sup> 2                    | 63·2   | 64.2 | 65·2 | 66 <sup>.</sup> 2 | 67·2 | 68·2 | 69·2                                  | 70·2     | 71.2 | 72·2 | 73·2 | Above    | Adult<br>Children.                    | Mid-<br>parents. |      |
| Above                         |    |       |                                      |        |      |      |                   |      |      |                                       |          |      | 1    | 3    |          | 4                                     | 5                |      |
| 72.5                          | 1  | ••    |                                      |        |      | ]    |                   |      | 1    | 2                                     | 1        | 2    | 7    | 2    | 4        | 19                                    | 6                | 72.2 |
| 71.5                          | ]  | ••    |                                      |        |      | 1    | 3                 | 4    | 3    | 5                                     | 10       | 4    | 9    | 2    | <b>2</b> | 43                                    | 11               | 69.9 |
| 70.5                          |    | 1     |                                      | 1      |      | 1    | 1                 | 3    | 12   | 18                                    | 14       | 7    | 4    | 3    | 3        | 68                                    | 22               | 69.2 |
| 69·5                          |    | ••    |                                      | 1      | 16   | 4    | 17                | 27   | 20   | 33                                    | 25       | 20   | 11   | 4    | 5        | 183                                   | 41               | 68·9 |
| 68·5                          |    | 1     |                                      | 7      | 11   | 16   | 25                | 31   | 34   | 48                                    | 21       | 18   | 4    | 3    | ••       | 219                                   | 49               | 68.2 |
| 67.5                          |    | ••    | 3                                    | 5      | 14   | 15   | 36                | 38   | 28   | 38                                    | 19       | 11   | 4    | •••  | ••       | 211                                   | 33               | 67.6 |
| 66·5                          |    | •:    | 3                                    | 3      | 5    |      | 17                | 17   | 14   | 13                                    | 4        |      | ··:  | •••  | ••       | 78                                    | 20               | 67.2 |
| 65·5                          |    | 1     | 1.                                   | 9      | 5    | 1 1  | 11                | 11   | 7    | 1 7                                   | 5        | 2    |      |      | ••       | 66                                    | 12               | 66.7 |
| 64 <sup>.</sup> 5<br>Below    |    | 1     | $\begin{vmatrix} 1 \\ \end{vmatrix}$ | 4<br>2 | 4    |      | 52                | 52   | ï    | $\begin{vmatrix} 2\\ 1 \end{vmatrix}$ |          |      |      | ••   | ••       | $\begin{array}{c} 23\\ 14\end{array}$ | 5<br>1           | 65·8 |
| Totals                        |    | 5     | 7                                    | 32     | 59   | 48   | 117               | 138  | 120  | 167                                   | 99       | 64   | 41   | 17   | 14       | 928                                   | 205              | •••  |
| Medians                       |    |       |                                      | 66·3   | 67.8 | 67·9 | 67.7              | 67.9 | 68·3 | 68.5                                  | 69·0     | 69·0 | 70.0 |      | ••       | ••                                    | ••               |      |

NOTE.-In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they stand. The reason why the headings run 62.2, 63.2, &c., instead of 62.5, 63.5, &c., is that the observations are unequally distributed between 62 and 63, 63 and 64, &c., there being a strong bias in favour of integral inches. After careful consideration, I concluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the Mid-parents.

## TABLE I.

NUMBER OF ADULT CHILDREN OF VARIOUS STATURES BORN OF 205 MID-PARENTS OF VARIOUS STATURES. (All Female heights have been multiplied by 1.08).





and breadth (0.45). The concluding passage of the memoir is worth citing for its historical interest :--- "The prominent " characteristics of any two correlated variables, so far at least as "I have as yet tested them, are four in number. It is supposed " that their respective measures have been first transmuted into "others of which the unit is in each case equal to the probable " error of a single measure in its own series. Let y = the deviation " of the subject, whichever of the two variables may be taken in "that capacity; and let  $x_1$ ,  $x_2$ ,  $x_3$ , &c., be the corresponding " deviations of the relative, and let the mean of these be X. Then "we find (1) that y = rX for all values of y, (2) that r is the same " whichever of the two variables is taken for the subject, (3) that r " is always less than 1, (4) that r measures the closeness of the " co-relation." Galton determined r by a simple graphic method,

## TABLE OF DATA FOR CALCULATING TABLES OF DISTRIBUTION OF STATURE AMONG THE KINSMEN OF PERSONS WHOSE STATURE IS KNOWN.

From group of persons of the same Statu to their Kinsmen in various near degree

Mid-parents to Sons .....

Brothers to Brothers .....

Fathers or Sons to } ......

Uncles or Nephews to } ....

Grandsons to Grandparents.

Cousins to Cousins .....

| ure,<br>es. | Mean<br>regression=w. | $= \mathbf{p} \times \sqrt[q]{(1 - w^2)}.$               |
|-------------|-----------------------|----------------------------------------------------------|
|             | 2/3                   | 1.27                                                     |
| •••         | 2/3                   | 1.27                                                     |
|             | 1/3                   | 1.60                                                     |
|             | · 2/9                 | 1.66                                                     |
|             | 1 / 9<br>2 / 27       | (Practically<br>that of Popu-<br>lation, or<br>1.7 inch. |

## **Regression to the mean**

- average than their parents.

  - height.
  - symmetric!
- He called this "**reversion** to the mean", and later "**regression** to the mean".
- which observations are drawn.



## • The effect that Galton observed was that children tended to have heights that were closer to

• Tall parents tended to have children that were still tall, but closer to the average child's height. • Short parents tended to have children that were still short, but closer to the average child's

• The same effect holds true in the opposite direction – remember, the correlation coefficient is

The presence of regression to the mean depends on random variability in the distributions from

## Pearson

- Karl Pearson (1857-1936), a British statistician, was one of Galton's disciples.
  - He was also a stauch eugenicist.
  - He further developed the theory of correlation, and defined the correlation coefficient as we know it now.
- 1911.
  - Started as part of UCL's Eugenics department.
  - Fun fact: UCSD has the world's first Cognitive Science department!

He founded the world's first Statistics department, at University College London, in

# Summary, next time

# Summary, next time

- it to probability theory.
  - Both used least squares in the development of planetary models.
- and was interested in studying the composition of the "average man".
- percentile and the term "regression".

Both Legendre and Gauss developed the theory of least squares, but Gauss tied

• Quetelet was one of the first to apply tools from statistics to the social sciences,

• Galton pioneered many now-ubiquitous ideas in statistics, including that of the

• He was motivated by the study of inheritance, and more specifically **eugenics**.